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Swirling flow in tubes of non-uni form cross-sections 
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A fluid swirling through an axisymmetrically deformed tube is considered, 
ignoring viscosity and compressibility. For a tube of radius R, having a longi- 
tudinal wall deformation of wave number k, the flow near the wall is blocked, if 
the Rossby number assumes one of the critical values (A: + k2R2)-B, where n is 
any positive integer, and A, is the nth zero of the Bessel function J,(A). Rossby 
number is defined as W/2Ro, in which W and w are the uniform axial and angular 
velocities in an undeformed tube. For a convergent-divergent nozzle, the critical 
Rossby numbers have the same form, with kR = 0. The flow exhibits radically 
different patterns when each critical Rossby number is crossed. 

1. The governing equation 
This paper deals with a class of steady, axisymmetric, swirling flows of an 

inviscid, incompressible fluid confined within a tube. Let u, v and w denote respec- 
tively the velocity components in the directions of increasing r ,  8, and z, the 
cylindrical co-ordinates fixed in space, where the x-axis coincides with the centre 
line of the tube. If far upstream from a disturbance the fluid is rotating with 
constant angular speed w about the z-axis, and the axial velocity is uniform and 
equal to W ,  the governing equation was derived by Long (1953); it  has the form, 

Here, $ is the Stokes stream function; the radial and axial velocity components 
can be obtained from $, through the relations, 

As pointed out by Yih (1965, p. 257), since the equation is not obtained by 
linearization but is exact, the amplitude of the motion need not be small. Many 
solutions for steady flows of large amplitude were obtained (e.g. those for the 
pipe flow of a rotating fluid into a sink, by Long 1956 and by Yih, O’Dell & 
Debler 1962, and those for a like flow past a symmetrically located sphere, by 
Lai 1964). In  the present work, (1) will be solved SO as to study the behaviour ofa 
rotating fluid through tubes with axisymmetric deformations along the length. 

t Also : Cooperative Institute for Research in Environmental Sciences, University of 
Colorado. 
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2. A tube with small sinusoidal deformation along the axis 

of radius R, whose wall is deformed into a shape described by 
For simpler analysis let us first consider a swirling flow confined within a tube 

(3) 

where u is the amplitude and k the wave-number of the sinusoidal deformation. 
By assuming (a/R) < 1, the condition that the flow is tangent to the wall becomes 

rw = R + u cos kz, 

approximately 

and solutions of ( 1 )  in simple closed form can readily be obtained. Substituting 
the assumed stream function 

$ = $Wr2+ f ( r )  cos kz 

where R, = W/2Rw is the Rossby number. Equation (5) gives three possible 
solutions, depending upon the magnitude of ( k2R2 - R;'). Satisfying the boundary 
condition (4), the corresponding stream functions and axial velocities are. for 

for Ro2 = k2R2, 

W U 
- = 1 - 2 -  cos kz ,  
W R 

and, finally, for R i 2  > k2R2, 

(9) 

The effect of rotation on axial velocity at the throat, kz = n, is shown in 
figure 1 plotted for kR = 3 and u/R = 0.1. Without rotation, Rcl = 0, the velocity 
on the axis is lower than that at the wall. Increasing o accelerates the central 
flow, and decelerates the flow near the boundary. When R;l=  kR, the axial 
velocity becomes uniform across any section as indicated by (9). The effect of 
increasing wremains the sameuntil ( R i 2 -  k2R2)8reaches thevalueh,( = 3.83171); 
A, designates the nth zero of the function J,(h). It should be noted that, when 
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( R t 2  - k2R2)) is in the neighbowhood of A,, equation (11) shows that w at  the 
wall deviates largely from W and therefore the approximated condition (4) 
cannot be used. In this case, the results (6)-(11) become invalid. 

When the parameter (Ro2 - k2R2)6 exceeds A,, the effect of increasing w be- 
comes different. At the throat, the flow decelerates at the centre, accelerates in 
an outer region, and then decelerates again near the wall. This is illustrated in 
figure 2 by the curves Ria = 34 and 45, plotted for the same kR, but a much 
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FIGURE 1. At low angular speeds, the effect of increasing angular speed on the axial 
velocity across the throat of a sinusoidally deformed tube with kR = 3 and alR = 0.1. 

WlW 
FIGURE 2. At higher angular speeds, the effect of increasing angular speed on the axial 
velocity across the throat of a sinusoidally deformed tube with kR = 3 and a/R = 0.02. 
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smaller amplitude, alR = 0.02. When that parameter becomes greater than 
A,( = 7*01559), another radical change occurs. The curve R i 2  = 73 shows that 
the central fluid at the throat is accelerated again. 

With further increase in angular speed, the effect on the central axial velocity 
reverses each time (Rt2- k2R2)* exceeds A,, A,, etc., and large velocity changes 
can be caused by a small wall deformation as revealed by (11). 

Thus, we have found that there exist infinitely many critical Rossby numbers 
of the values, 

At these critical angular speeds, no solution of (1) can be found to satisfy the 
boundary condition (4). Physically speaking, the fluid cannot go around the 
humps a t  the wall, and is expected to become stagnant in that region. This is 
the phenomenon of blocking, which occurs in a rotating and in a stratified fluid 
flow, discussed in detail by Yih (1965). The flow patterns with blocking will be 
obt,ained in $ 4  which concerns a convergent-divergent nozzle. 

(12) (RJ,,, = (A: + k'R')-* (n = 1,2 ,3 ,  . . .). 

The angular velocity is expressed by 

obtained from the condition that angular momentum of a fluid particle is con- 
served along its streamline. It shows that the angular velocity increases or 
decreases when a particle is deflected towards or away from the tube axis. 

3. Tubes with large periodic wall deformations 
If one does not specify the shape of wall deformation a priori, as we did in tj 2, 

exact solutions can be obtained for a rotating flow through tubes with large- 
amplitude deformations by using an inverse method, which may show reversed 
flows in the fluid. For example, if (Rk11 > kR, 

2 gWR2 1c. = (i) +C;.J,(,I(R; - k 2 R 2 ) ~ ) ~ o s k z  
(14) 

is an exact solution of (1) .  It represents flows bounded by a wall described by the 
equation $/+WRz = I., whose shape is controlled by the arbitrary constant C, 
which is not necessarily small. Some of the flow patterns, and the corresponding 
axial velocity distributions, are plotted for kR = 2 and for values of c, deter- 
mined in such a way that the radius at  the throat is 0.9R. Because of symmetry, 
only the section n < kz < 27~ is shown. 

17igure 3, based on R,' = 4, shows that the velocity across the throat is at  a 
maximum in the centre. This central flow decelerates continuously downstream, 
and the flow becomes separated from the axis, to form areversed flow in the region 
of larger cross-sections. Figure 4 is plotted for a higher angular speed, R;l = 6. 
NOW (R;, - k2R2)* is greater than A, but, less than A,, and this flow behaves en- 
tirely differently from the previous one. The reverse-flow region moves into the 
throat, and the central velocity becomes highest a t  the section where the area 
is at  a maximum. At a still higher angular speed corresponding to Ro1 = 9, 
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which is in the region A, < ( R G ~ -  k2R2)t < A,, figure 5 shows that the central 
separated region moves back from the throat to the section of maximum area. 
Wrapping around this cylindrical core of separation, there appears an annular 
ring of backflow close to the wall. The annular-ring flow pattern also appears 
within the throat. 

af . 

FIGURE 3. Streamlines and axial velocity profiles in a rotating flow 
at  R;l = 4 through a wavy tube with k R  = 2 and C = 0.718. 

FIGURE 4. Streamlines and axial velocity profiles in a rotating flow 
at R;l = 6 through a wavy tube with k R  = 2 and C = -0.628. 

The general flow behaviour at various angular speeds is similar to that dis- 
cussed in Q 2 except the velocity changes are magnified. More complicated flow 
patterns can be obtained if the Rossby number is reduced further. 
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It is interesting to compare the theoretical result with the experimental work 
reported by Gore & Ranz (1964). They dealt with a swirling air flow expanding 
freely from the opening of a uniform tube into the atmosphere, instead of that 
moving through an alternatively convergent-divergent nozzle. However, the 
similarities between the two for the flow near the throat are striking. Let 
the Rossby number of their flow be computed, based on the tube radius and on 
the assumed axial velocity in the tube. In  the experiment of Gore & Ranz at  
R;l= 3.14, a well-defined backflow appeared outside the tube, where the flow 
was divergent; this looked very similar to the pattern in figure 3. At R;'= 8.6, 
Gore & Ranz found that part of the separated flow moved into the opening of 
the tube; this is analogous to the flow in figure 4. Had the experiment run at  
higher swirl ratios, the annular rings of separation plotted in figure 5 might 
have been observed. Gore & Ran2 also observed critical swirl ratios. Because of 
different geometric configurations, their critical Rossby numbers do not corre- 
spond to those obtained in (12). 

$1; WR2= 1 .O 
c i 

O f f  kz=2n I 

FIauRE 5. Streamlines and axial velocity profiles in a rotating flow 
at R;I = 9 through a wavy tube with kR = 2 and C = 0.965. 

When critical Rossby numbers are reached, (14) describes all the possible 
internal waves inside a straight tube (which will be discussed in the next section). 

4. Convergent-divergent nozzles 
We are now concerned with a swirling flow moving through a convergent- 

divergent nozzle. The inverse method of Fraenkel (1956) is adopted, in which 
the wall shape is not specified a priori. Let R be the radius of the undeformed 
tube. From the fact that far upstream the longitudinal velocity is W and the 
fluid is rotating with constant angular speed w ,  the general solution of (1) can 
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be written separately for the upstream and downstream regions. One gets, 
respectively, 

in which p ,  R = (A: - Rc2)*, 

k,R = (Ro2 - A:)+, 

and the integer N is defined by the relation 

A, < IR<’l < AN+,. (19) 

Rossby number and A, are the same as those defined previously in $2. In  the 
case N = 0, all the terms containing trigonometric functions in (16) are dropped. 

The coefficients a,, b,, c, and d, are to be determined from the requirements 

in which f ( r )  = 0 for 0 6 r < rl. f ( r )  represents a distribution of ring vortices of 
variable strength at  z = 0, extending over the range r1 6 r < R, which implicitly 
determines the shape of the barrier at  the wall. Instead of a vortex sheet, Fraenkel 
used source and sink distributions to generate desired body shapes. 

The condition (20) requires that 

a, =d,  for n > N and c, = 0 for n < N .  (22) 
Equations (15), (16) and (22) reduce (21) to: 

m N 
2 C a p -J1 A,- - z b 

N +  1 It n: ( L) n = l  (23) 

For simpler computations let us choose the function, 

where Q is an arbitrary constant. Multiplying (23) by Jl{Am(r/R))dr, and 
integrating between the limits r = 0 and R, we obtain the following by using 
orthogonality relationships. For n = 1, 

54 Fluid Mech. 38 
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FIGURE 7. A rotating flow at Ro1 = 3-831 through a nozzle based on rl = 0.9 

and Q = 19.26. 

By assigning different values to r, and Q,  one can obtain various contours for 
the nozzle described by the equations @ k = + WR2. It is tedious to adjust their 
values so that the nozzle shape becomes the same for different flows. To simplify 
our work, the value of rl is fixed at 0-9 R, and Q is so chosen that the radius of the 
throat is always 0.86R. The zeros of J1 used in our calculations are those up to 
A12. It has been found that the barriers so generated do not vary too much in 
shape if the Rossby number is not too close to  l/An, where n denotes any positive 
integer. Flows of the same flow rate, but at  increasing angular speed, moving 
through nozzles of the same contraction ratio, are presented in figures 6-15. 

When IR;'l is less than A,, or N = 0, equation (16) indicates that downstream 
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waves do not appear and the flow is symmetric about x = 0. A representative 
flow at R i l  = 3.73 is plotted in figure 6 in comparison with the non-rotating 
flow at R;l=  0. The shapes of the nozzle for these two flows are almost identical. 
When going through a contraction, the streamlines of the rotating fluid deflect 
more towards the axis, as shown on the left half of the figure. Axial velocity 
profiles at  z = 0 and R are plotted on the right, showing the deceleration of the 
central region after the throat. At Rc1 = 3.831, which is a little less than A,, 
a wider barrier is produced in figure 7. The flow concentrates more towards the 
axis, and the wall contraction has a far-reaching influence in the fluid. The axial 
flow near the wall becomes almost stagnant both up- and downstream from the 
barrier. 
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FIGURE 8. First blocking at R;' = 3.83171 or A,. 

When the value of R t l  increases more towards A,, the coefficient a, increases 
very rapidly as can be seen in (25), and the barrier becomes further elongated. 
At the limit, when a;' = A,, the expression (25) can no longer be used, and (15) 
and (16) take the form 

@F = VRe[k  (~ )2+a l f J l (n l~ ) ] ;  

the flow is now independent of z. The requirement, that the outmost streamline 
$ = &WR2 contracts to a throat of radius 0.86R, determines the value of a,. 
Figure 8 shows that the barrier becomes a straight cylindrical surface. In  other 
words, under this critical condition, if a barrier is placed a t  z = 0, the flow up- 
and downstream from the body is completely blocked, and the tube cross-section 
is effectively reduced. When this happens, the uniform upstream conditions. 
cannot be assumed. 

Immediately after this critical value is passed, (16 )  indicates that a wave of 
the form sink,z appears downstream from the throat, and the flow pattern 
becomes non-symmetric and basically different. Such a flow at Rr1 = 3.832 is 
plotted in figure 9, which shows that a large cylinder of reversed flow occupies 
most of the tube downstream from the throat, and that the main flow is ac- 
celerated toward the tube boundary. The separated flow rejoins the axis a t  
a large distance z = ?r/k,, approximately, and then separates again at  approxi- 
mately z = 2n/k,. A similar pattern will recur thereafter, when the exponential 
terms are damped out at  such a large distance. 

54-2 
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Figure 10 shows that at  a higher angular speed corresponding to R;' = 5 ,  
the separated regions shrink in size and the distances in between become shorter. 
It is found at Rg' = 6 that the first reverse bubble moves into the throat, and the 
downstream bubbles disappear, although a wave pattern is still preserved. In- 
creasing the rotation further, at Rf l  = 7 the reversed flow expands again, and the 
flow becomes nearly symmetric about the throat. The streamlines are plotted 
in figure 11. The flow behaviour with increasing angular speed observed by Gore 
& Ranz (1964) again agrees qualitatively with our result. 
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F I G ~ E  9. A rotating flow at R;l = 3.832 through a nozzle based on rl = 0.9 
and Q = 223.60. 
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When Rcl approaches A,, both the barrier and the separated region are 
elongated. They extend to infinity when the exact value of A, is reached. The 
second blocking phenomenon is shown in figure 12. The expression for the stream 
function is the same as (29), if a, and A, are replaced by a, and A,. Under this 
second critical condition, the barrier not only blocks the flow near the wall, but 
also reverses the flow in the central portion. Again the uniform upstream con- 
ditions are violated. 

Blocking breaks downif R;l increases slightlyfrom A, as illustratedin figure 13. 
At the value 7-016 the flow divides itself into two branches: one accelerates to- 
wards the axis, and the other towards the wall. In between, there is an annular 
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F I G ~ E  12. Second blocking at R;l = 7.01559 or A,. 
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F I Q ~ E  13. A rotating flow at R;I = 7.016 through a nozzle based on rl = 0-9 

and Q = 285.80. 
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FIQTJRE 14. A rotating flow at  R i l  = 8 through a nozzle based on rl = 0.9 

and Q = 248.54. 
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reversed region containing a pair of ring vortices, which closes far downstream. 
Increasing Rgl to 8, figure 14 shows separations at  the axis and the wall appearing 
in addition to those in the intermediate regions. 

The third blocking occurs at  Rol = A, (=  10.17347). After that, the flow 
exhibits a more complicated pattern (represented by figure 15, where it is plotted 
for Rtl  = 11). 
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FIGURE 15. A rotating flow at R;l = 11 through a nozzle based on rl = 0.9 

and Q = 426.66. 

In the case of a convergent-divergent nozzle, the critical Rossby numbers for 
blocking still have the same form as (12) with IcR = 0, corresponding to a sinu- 
soidally deformed tube with infinitely long wavelength. The flow pattern changes 
abruptly when the rotational speed of the fluid exceeds each of the critical values. 

!rhe problem of a rotating fluid through a convergent-divergent nozzle was 
tackled by Fraenkel(1956), but in his work only one case in which Rgl < A, was 
discussed. The phenomena of cylindrical core and annular ring of reversed flows 
were observed in the experiments of Binnie (1957), in which the far flow might 
not be in a rigid body rotation, and a modified analysis is required. 

In contrast with the explanation of Nissan & Bresan (1961), that secondary 
flows in a rotating fluid are associated with a viscous effect, it has been demon- 
strated here that such flows are possible in an inviscid swirling flow. 

This work was supported in part by the Advanced Research Projects Agency, 
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